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Abstract

Many classical univalence criteria depending on the Schwarzian derivative are special cases
of a result, proved in [18], involving both conformal mappings and conformal metrics. The
classical theorems for analytic function on the disk emerge by choosing appropriate conformal
metrics and computing a generalized Schwarzian. The results in this paper address questions
of extending functions which satisfy the general univalence criterion; continuous extensions to
the closure of the disk, and homeomorphic and quasiconformal extensions to the sphere. The
main tool is the convexity of an associated function along geodesics of the metric. The other
important aspect of this study is an extremal function associated with a given criterion, along
with its associated extremal geodesics. An extremal function for a criterion is one whose image
is not a Jordan domain. An extremal geodesic joins points on the boundary which map to the
same point in the image. We show that, for the general criterion, the image of an extremal
geodesic under an extremal function is a euclidean circle.

1 Introduction

In this paper we study some geometric aspects of univalence criteria depending on the Schwarzian
derivative in a fairly general setting. The Schwarzian derivative of an analytic function f is defined
by

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Let D denote the unit disk in the complex plane. We consider analytic or meromorphic functions
defined on D and metrics on D of nonpositive curvature that are conformal to the euclidean metric.
Our main concerns are with extending maps satisfying the general univalence criterion in Theorem
1, below, to D and to Ĉ = C∪{∞}, and also with geometric properties of extremal functions for the
criterion. We make systematic use of convexity coming from comparison theorems for differential
equations and inequalities.

Univalence Criteria In the paper [17] that started the whole subject, Nehari proved that either
of the conditions

(1.1) |Sf(z)| ≤ 2

(1− |z|2)2
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or

(1.2) |Sf(z)| ≤ π2

2
,

is sufficient for f to be univalent in D. The constants π2/2 in (1.2) and 2 in the numerator of (1.1)
are each sharp.

Let g be a metric (tensor) on D and let g0 = |dz|2 denote the euclidean metric. For a smooth,
real-valued function ψ on D we define a symmetric, traceless 2-tensor

Bg(ψ) = Hessg ψ − dψ ⊗ dψ −
1

2

{
∆gψ − ‖ gradg ψ‖g

2
}
g,

where, as we have indicated by the subscripts, the metric dependent quantities Hessian, gradient,
Laplacian, and norm are computed with respect to g. (We use single bars, and no subscript, to
denote the usual euclidean norm.) If f : (D, g)→ (C, g0) is a conformal, local diffeomorphism with
f∗g0 = e2ψg, its Schwarzian tensor, [19], [18], is defined by

Sgf = Bg(ψ).

When g is the euclidean metric Sgf can be written as the matrix

Sgf = (ReSf − ImSf − ImSf − ReSf) .

For the arguments in this paper it will not be necessary to know all the aspects of this gener-
alization of the Schwarzian. The familiar properties in the classical case are still present for the
Schwarzian tensor, most importantly that

(1.3) Sg(M ◦ f) = Sgf

if M is a Möbius transformation. This is a special case of the chain rule

(1.4) S(f ◦ h) = h∗S(f) + Sh,

which includes the classical formula

S(f ◦ h) = ((Sf) ◦ h)(h′)2 + Sh.

The important thing to keep in mind is that the Schwarzian tensor is computed with respect to
a background metric g, and it changes when g changes. When there is conformal change in g the
Schwarzian tensor changes in a simple way, governed, in fact, by (1.4).

Here, as in the classical setting also, there are two very useful consequences of the Möbius
invariance (1.3). First, so long as bounds on Sgf are unaffected, which will be the case in the
situation we consider, it is possible in the course of a proof to normalize f in various ways by
composing it with a Möbius transformation of the range. Second, one can also define the Schwarzian
tensor for meromorphic functions by shifting the range of the function by a Möbius transformation
in order to miss the point at infinity. We have some further comments on this, below.

In [18] the authors obtained a general univalence criterion in terms of Sgf that involves both
the curvature of the metric and a diameter term. Let K(g) denote the Gaussian curvature of the
metric g. In the two-dimensional case the result can be stated as:
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Theorem 1 Let f be analytic or meromorphic in (D, g) and locally univalent. Suppose that any
two points in D can be joined by a geodesic of length < δ, for some 0 < δ ≤ ∞. If

(1.5) ||Sgf ||g ≤
2π2

δ2
− 1

2
K(g)

then f is univalent.

In [18] the formulation of this theorem is in terms of a conformal, local diffeomorphism of an
n-dimensional Riemannian manifold, n ≥ 2, into the n-sphere with its standard metric. In many
ways having the sphere as the target is the most natural set-up. Adopting it in the two-dimensional
case would allow us to dispense with the distinction between analytic and meromorphic functions,
for instance. To make the tie-in with more classical results clearer, especially in defining extensions
of the mapping, we decided to stick with the complex plane with its euclidean metric as the target.
In any event, it makes no substantial difference in any of our results for the following reason. If f is
a conformal, local diffeomorphism into either C with the euclidean metric or S2 with its standard
metric (Ĉ with the spherical metric), then, although the conformal factors are different under the
pullback f∗, the Schwarzian tensor Sgf is the same in both cases. For this fact, see [19].

Many known criteria for univalence follow from Theorem 1 simply by choosing different confor-
mal background metrics g. For example, as was pointed out in [18], if g is the euclidean metric,
with K = 0 and δ = 2, then (1.5) reduces to (1.2), while if g is |dz|2/(1 − |z|2)2, the Poincaré
metric, with K = −4 and δ =∞, then one obtains the condition (1.1).

Similarly, one can obtain the very general criterion of Epstein, [14]:

(1.6)

∣∣∣∣Sf(z)− 2(τzz − τ2
z )(z) +

4z̄τz(z)

1− |z|2

∣∣∣∣ ≤ 2(1 + (1− |z|2)2τzz̄(z))

(1− |z|2)2
.

In this case the metric to take in Theorem 1 is e2τ |dz|2/(1−|z|2)2, where τ is a real-valued function
satisfying some mild extra conditions. See [6] for the approach to Epstein’s theorem using Theorem
mail1, and [4] for an extension of (1.6) allowing for complex parameters.

Metrics on D and Associated Functions Unless noted otherwise, in the remainder of this
paper we will always assume that

K(g) ≤ 0,

and so we will not state this as a separate assumption in any of our results. Geometrically, the
main consequence of this is that geodesics cannot cross more than once in D.

If the metric g on the disk is complete we must take δ =∞ in Theorem 1. Then (1.5) becomes
||Sgf ||g ≤ −(1/2)K(g), which we will write as

(1.7) ||Sgf ||g ≤
1

2
|K(g)|.

In some instances, hypotheses, theorems, or proofs are different according to whether δ < ∞ or
δ = ∞. For short we refer to the latter as ‘the complete case’. (One can have δ = ∞ but g not
complete. We do not consider this case.)

We consider metrics on D of the form

(1.8) g = e2σ|dz|2 = e2σg0.
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We let lg denote the length function (of a curve) and dg the distance (between points).
We recall that the curvature is given in terms of σ by

(1.9) K(g) = −e−2σ∆g0σ.

Using (1.4), (1.9), and || · ||g = eσ| · |, the basic inequality on the Schwarzian, ||Sgf ||g ≤ 2(π/δ)2 −
(1/2)K(g), in Theorem 1 can be written in euclidean terms as

(1.10) |Sf − 2(σzz − σ2
z)| ≤

2π2

δ2
e2σ + 2σzz̄.

Let f be a conformal, local diffeomorphism of (D, g) into (C, g0). Denoting

(1.11) ϕ = log |f ′|,

we have

(1.12) f∗g0 = e2(ϕ−σ)g,

and hence

(1.13) Sgf = Bg(ϕ− σ).

Definition We define

(1.14) uf = e(σ−ϕ)/2.

We refer to uf as the associated function.

If we use the euclidean metric in both the domain and the range of f then uf = |f ′|−1/2. When
the context is clear we write u for uf .

We will use the function uf throughout this paper. The basis of much of our analysis is the
fact that there is a lower bound for the Hessian of uf when f satisfies (1.5). This is Theorem 2
in Section 2. One then obtains bounds for uf by means of comparison theorems for differential
equations. In the complete case the result is that uf is a convex function on D with respect to
the metric g. In fact, the convexity of uf becomes a characteristic property of functions satisfying
(1.7) if one allows for composing f with a Möbius transformation of its range. This is Corollary 2
in Section 2.

If f is meromorphic in the disk then uf is zero at a pole. At a pole uf is not differentiable, so
convexity, as a property of the Hessian, means convex away from the poles.

Boundary Behavior and Extremal Functions To study boundary behavior we need some
special, global properties of the metric g = e2σ|dz|2 on D. Here we make contact with the subject
of ‘visibility manifolds’, an area of differential geometry that has been studied extensively. Of the
literature on the subject we mention only the lectures of Eberlein [12] for a general survey of the
early work, and a paper of Epstein [13] which is more directly related to the present paper.

The first property has to do with extending geodesics to the boundary, and with reaching every
boundary point in this way. We state the property first as it often appears in the literature, but
we must then say more to distinguish the complete and the non-complete cases.
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Definition The metric g on D has the Unique Limit Point property (ULP) if:
(a) Let z0 ∈ D. If γ(t), 0 ≤ t < T ≤ ∞ is a maximally extended geodesic starting at z0 then
limt→T γ(t) exists (in the euclidean sense). We denote it by γ(T ) ∈ ∂D.
(b) The limit point is a continuous function of the initial direction at z0.
(c) Let ζ ∈ ∂D. Then there is a geodesic starting at z0 whose limit point on ∂D is ζ.

We say a little more about part (c) in this condition. The assumption of nonpositive curvature
implies that the limit point is a monotonic function of the initial direction at the base point. Part
(b) requires that it is continuous. It is conceivable that, for some metrics, all geodesics from a base
point might tend to the same limit point on the boundary, so the mapping from initial directions
to points on ∂D would reduce to a constant. We want to avoid this degenerate situation and be
certain that every boundary point is ‘visible’, so we include that fact in the statement of ULP.

(ULP) is a natural condition on complete metrics and is frequently formulated this way, if not
with this appellation. For our work on boundary behavior in the non-complete case we have to
strengthen it slightly. Again take any base point z0 ∈ D and consider geodesics from z0 extended
maximally to their unique limit points on the boundary. In general, the length of such a geodesic as
a function of the initial direction at z0 is lower semicontinuous, and for our arguments we need to
know that it is continuous. We let (ULP*) mean (ULP) plus the continuity of the length function.
This is the assumption we will often adopt in the non-complete case. In the complete case the
length function is the constant function +∞ and the particular problems we encounter in the
non-complete case do not come up; (ULP) will suffice as is.

The second global property we need is

Definition The metric g on D has the Boundary Points Joined property (BPJ) if any two points
on ∂D can be joined by a geodesic which lies in D except for its endpoints.

The conditions above must be hypotheses in many of our results, but none of them, alone or
together, is asking too much of a metric. Nevertheless, we need to know when they hold. In Section
6, we establish several conditions on the conformal factor σ implying the (ULP) et al conditions.

The fundamental result on univalence criteria and boundary behavior is Theorem 3 in Section 3,
stating that when (ULP) or (ULP*) holds, a function satisfying (1.5) has a spherically continuous
extension to D. This had been proved for functions satisfying Nehari’s criterion (1.1) by Gehring
and Pommerenke in [16].

We now make the following definition.

Definition Suppose the metric g satisfies (ULP), or (ULP*), and (BPJ). An analytic function f
in (D, g) satisfying (1.5) is an extremal function for (1.5) if the extension of f to D is not injective
on ∂D. A geodesic γ in D an extremal geodesic if it joins two points on ∂D where an extremal
function f fails to be injective.

In Section 4 we study extremal functions and extremal geodesics in some detail. We show that
equality holds in (1.5) along an extremal geodesic, and we prove an ‘Image Circle Theorem’, stating
that the image of an extremal geodesic is a euclidean circle. This surprising geometric phenomenon
was first discovered by Epstein [15] for his univalence criterion (1.6); it is essentially included in the
case δ =∞ of our result. His methods were much different and do not apply to the case δ <∞.

Homeomorphic and Quasiconformal Extension There are strong forms of the univalence
criteria (1.1), (1.6) and (1.7) having to do with quasiconformal extensions. Thus if the right hand
side of the inequalities is multiplied by t, for 0 ≤ t < 1, then the function f has a 1+t

1−t -quasiconformal

extension to Ĉ. See [3], [14] and [6]. In this case one says that the image Ω = f(D) is a quasidisk.
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In general, if f satisfies (1.7) then the image will not be a quasidisk, though it may be a Jordan
domain. In Section 5 we address the question of constructing homeomorphic extensions to Ĉ of
functions satisfying (1.7) under the assumption that the image is Jordan. We are able to find
several characteristic properties for a function to satisfy (1.7), and also for f(D) to be a Jordan do-
main. The result on homeomorphic extensions, together with the description of extremal functions
and geodesics, can be viewed as a description of the possible degeneration that a quasiconformal
extension can undergo as t → 1. We can do this only in the complete case, and it is an interest-
ing question to construct homeomorphic and quasiconformal extensions for functions satisfying a
stronger form of (1.5) when δ < ∞. For example, it follows from the work of Gehring and Pom-
merenke in [16] that the stronger form |Sf | ≤ t(π2/2) of (1.2) implies that f has a quasiconformal
extension. In [7] we are able to give an explicit formula for the extension in this case, but we cannot
yet do so in general.

Example Finally, in Section 7 we apply our work to one particular example of a univalence
criterion similar to one considered by Ahlfors [2]. A more detailed study of this example is presented
in [10].

Acknowledgements We are very happy to thank C. Epstein for his interest in the present paper,
and even more for the inspiration provided by his earlier papers on the Schwarzian and univalence
criteria. Though our arguments are quite different from his, several of the results here, particularly
the extensions and the image circle theorem for extremal geodesics, were suggested by his work.
We also thank C. Cortázar, M. Elgueta, and R. Mazzeo for stimulating conversations. Finally, we
are grateful to the referee for a very thorough and constructive reading of this paper.

2 Bounds on the Hessian, Convexity, and Critical Points

We begin with a computation relating the basic upper bound (1.5) on the Schwarzian to a lower
bound for the Hessian of the associated function uf defined in (1.14). We use this result for much
of our analysis.

Theorem 2 If ||Sgf ||g ≤
2π2

δ2
− 1

2
K(g) then Hessg uf +

π2

δ2
uf g ≥ 0.

Proof. This actually follows from some of the computations in [18], but we give a direct verification
here. Write u for uf , and let v = u2 = eσ−ϕ. Then (see [19] or [18]),

(2.1) Hessg v + vSgf =
1

2
(∆gv)g,

We also have that

∆gv = v∆g(log v) +
1

v
|| gradg v||2g.

Using ∆g = e−2σ∆g0 and K(g) = −e−2σ∆g0σ we obtain

∆gv = ve−2σ∆g0(σ − ϕ) +
1

v
|| gradg v||2g = −vK(g) +

1

v
|| gradg v||2g.
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Hence in (2.1),

Hessg v = v(−1

2
K(g)g − Sgf) +

1

2v
|| gradg v||g

2g(2.2)

≥ −2π2

δ2
v g +

1

2v
|| gradg v||g

2g.

On the other hand, since v = u2,

Hessg v = 2uHessg u+ 2du⊗ du, and
1

2v
|| gradg v||g

2 = 2|| gradg u||g
2.

It follows that

uHessg u+ du⊗ du ≥ −π
2

δ2
u2g + || gradg u||g

2g,

so

Hessg u+
π2

δ2
u g ≥ 0,

as desired.

If γ(t) is a unit-speed geodesic for g and U(t) = uf (γ(t)), then along γ the inequality for the
Hessian becomes

U ′′ +
π2

δ2
U ≥ 0.

Equality holds along γ if and only if equality holds in (1.5) along γ.
Next, a real-valued function w on D is convex with respect to g if the Hessian of w, computed

with respect to g, is positive semi-definite. This is equivalent to requiring that (w ◦ γ)′′(t) ≥ 0 for
every geodesic γ = γ(t) in D, where t is an arclength parameter for g. When g is complete Theorem
2 is thus a convexity result. We use this often enough to merit a separate statement. (Recall that
if f is meromorphic then uf is zero at the pole. The computation in Theorem 2 applies away from
the pole.)

Corollary 1 If ||Sgf ||g ≤ 1
2 |K(g)| then uf is g-convex.

From Corollary 1 we deduce a characterization of functions satisfying (1.7). Because the char-
acterization involves shifting the range by an arbitrary Möbius transformation, the hypothesis is
that f is meromorphic; see also [11].

Corollary 2 Let g be complete and f a meromorphic function in (D, g). The following are equiv-
alent:
(a) ||Sgf ||g ≤ 1

2 |K(g)|;
(b) uM◦f is convex for all Möbius transformations M ;
(c) for every z0 ∈ D there exists a Möbius transformation M such that uM◦f has a positive local
minimum at z0.

Proof. (a) ⇒ (b): Since Sg(M ◦ f) = Sgf for any Möbius transformation M it suffices to show
that uf is convex, and this is precisely Corollary 1.

(b) ⇒ (c): Let z0 ∈ D. Since uM◦f is convex, it suffices to choose M so that uM◦f has a critical
point at z0, and z0 is not a pole of f . But it is easy to see that an arbitrary Möbius transformation
M has enough parameters to produce such a critical point.
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(c)⇒ (a): Let z0 ∈ D and suppose that u = uM◦f has a positive local minimum at z0. Then z0 is
not a pole of M ◦ f , and, with v = u2, from (2.2)

(Hessg v)(z0) = v(−1

2
K(g)g − Sg(M ◦ f))(z0),

which must be ≥ 0. It follows that ||Sg(M◦f)||g ≤ −1
2K(g) = 1

2 |K(g)| at z0. Since Sg(M◦f) = Sgf ,
and since z0 was arbitrary, the bound must hold everywhere.

Though Theorem 2 and Corollary 1 are local, under the assumption of completeness Corollary 1
has a useful global consequence based on the fact that a critical point of a smooth convex function
is always a global minimum.

Corollary 3 Let g be complete and f a meromorphic function in (D, g). If uf has a critical point
at which uf is positive, then f is analytic. If the critical point is unique then f is bounded.

Proof. For the first part, once again, at a pole of f the function uf must vanish. This would then
give a global minimum of uf distinct from the one at the supposed critical point.

For the second part, let z0 ∈ D be the unique critical point of u = uf , u(z0) > 0. Then u(z0)
is the absolute minimum of u in D.

We use geodesic polar coordinates r, θ on D based at z0. Because the critical point is unique,
given an r0 > 0 there exists a c > 0 such that the radial derivative ur is ≥ c at points z of g-distance
≥ r0 from z0. Let γ = γ(t) be a geodesic with γ(0) = z0, and write U(t) = u(γ(t)). Then U ′(t) ≥ c
for t ≥ r0, and since U(t) is convex

(2.3) U(t) ≥ b+ ct,

for some constant b independent of θ. Hence

(2.4) eϕ(γ(t))e−σ(γ(t)) = U−2(t) ≤ 1

(b+ ct)2
,

and so for all T > r0,∫
γ|[r0,T ]

|f ′(z)| |dz| =
∫ T

r0

eϕ(γ(t))e−σ(γ(t)) dt

≤
∫ T

r0

1

(b+ ct)2
dt ≤

∫ ∞
r0

1

(b+ ct)2
dt <∞.

Since g is complete, γ(T )→ ∂D as T →∞, and we conclude that f(D) is bounded.

Both the statement of this corollary and its proof will be used in later arguments.

Remark. Corollary 3 is a distortion theorem in disguise. We can always assume that the critical
point of uf is at the origin by changing f to M ◦ f by a Möbius transformation M , and we can
normalize further so that uf (0) = 1. Even if the critical point is not unique the convexity of uf
implies that e(σ−ϕ)/2 = uf (z) ≥ uf (0) = 1, or

|f ′| = eϕ ≤ eσ.

When g is the Poincaré metric with eσ(z) = 1/(1− |z|2) this becomes

|f ′(z)| ≤ 1

1− |z|2
,
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which is the sharp upper bound for functions f(z) = z + a3z
3 + · · · satisfying Nehari’s condition

|Sf(z)| ≤ 2/(1 − |z|2)2, [8]. When the critical point is unique, (2.3) implies that for R0 ≤ |z| < 1
one has

(2.5) |f ′(z)| ≤ eσ(z)

(b+ cdg(0, z))2
,

where now the constants R0, b and c depend on f . Here dg denotes the distance in the g-metric.
In some cases one can deduce estimates for the modulus of continuity from (2.5).

We will make further use of convexity and critical points in Section 5. Analogous results on
distortion for the non-complete case have eluded us.

3 Extension to D

In this section we use the differential inequality provided by Theorem 2 to prove that a function
satisfying the general univalence criterion (1.5) has a continuous extension to D. Here, for the first
time, we we must assume the unique limit point property (ULP).

Theorem 3 Suppose f is a meromorphic function in (D, g) satisfying (1.5), and that g satisfies
(ULP) if it is complete and (ULP*) if it is not complete. Then f admits a (spherically) continuous
extension to D.

Proof. Let Ω = f(D). We will show that small arcs on S1, corresponding to intervals of initial
directions of geodesics from a base point, parametrize small arcs on ∂Ω. This implies that ∂Ω
is locally connected at each point, which is a necessary and sufficient condition for f to have a
continuous extension to D. To obtain the requisite estimates we have to modify f by Möbius
transformations of the range, and this is why the theorem is stated in terms of meromorphic rather
than analytic functions.

The proof is slightly different in the two cases δ < ∞ and δ = ∞. We consider first δ < ∞;
thus (ULP*) is in force. Let ζ0 ∈ ∂D and let γ0 be a geodesic in D ending at ζ0. Let z0 ∈ γ0 be
a point of distance < δ/8 from ζ0, and let θ0 be the direction of γ0 at z0. Choose a small enough
neighborhood V of initial directions about θ0 with corresponding geodesics covering an arc I ⊂ ∂D
of limit points so that the distances between z0 and all such limit points is ≤ δ/4.

Let θ ∈ V and let γ(t), 0 ≤ t ≤ Tθ be the corresponding geodesic starting at z0 and ending at a
point on I ⊂ ∂D. Replace f by M ◦ f , where the Möbius transformation M is chosen so that the
associatied function uM◦f satisfies

graduM◦f (z0) = 0 and uM◦f (z0) = 1.

We want to apply Theorem 2 to uM◦f along the geodesics γ. Since Sg(M ◦ f) = Sgf , we continue
to write f for M ◦ f and uf for uM◦f . The function U(t) = uf (γ(t)) satisfies

U ′′ ≥ −π
2

δ2
U, U(0) = 0, U ′(0) = 1.

From this,

U(t) ≥ cos(
π

δ
t),
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and so

U(t) ≥ cos(
π

δ

δ

4
) =

1√
2
.

Note that since uf is non-zero in the sector swept out by the geodesics γ, f is analytic there.
Referring to (1.11) and (1.14),

|f ′| = eϕ ≤ 2eσ,

along γ, and

(3.1)

∫
γ
|f ′| |dz| ≤ 2lg(γ) ≤ δ

2
.

This implies that
lim
t→Tθ

f(γ(t))

exists. We denote the limit by f(γ(Tθ)); it lies on ∂Ω.
We prove next that f(γ(Tθ)) ∈ ∂Ω depends continuously on the initial direction θ of the geodesic.

Let γ1, 0 ≤ t ≤ Tθ1 and γ2, 0 ≤ t ≤ Tθ2 , be two geodesic rays starting at z0 with θ1, θ2 ∈ V . We
need to estimate the distance between f(γ1(Tθ1)) and f(γ2(Tθ2)). Let 0 < τ < min{Tθ1 , Tθ2}. Then

|f(γ1(Tθ1))− f(γ2(Tθ2))| ≤ |f(γ1(Tθ1))− f(γ1(τ))|+ |f(γ1(τ))− f(γ2(τ))|
+ |f(γ2(Tθ2))− f(γ2(τ))|.

The terms |f(γi(Tθi)) − f(γi(τ))| are dominated by the tails of the integrals in (3.1) which are
uniformly bounded by δ/2. Now using the continuity of the length function in the hypothesis
(ULP*), there is a τ0 so that both these terms are small for τ0 ≤ τ < min{Tθ1 , Tθ2} if |θ1−θ2| is small.
The remaining term can be controlled using the continuity of f and the fact that |γ1(τ) − γ2(τ)|
is small if |θ1 − θ2| is small. These estimates prove that the endpoints f(γ(Tθ)) ∈ ∂Ω, γ varying,
depend continuously on the initial directions θ = γ′(0).

It remains to show that any point in ∂Ω is the image f(γ(Tθ)) as in the construction above. Let
ω ∈ ∂Ω and let {wn} be a sequence of points in Ω which converges to ω. Choose a subsequence,
labeled the same way, of zn = f−1(wn) converging to a point ζ ∈ ∂D. Let z0 ∈ D be a point of
distance < δ/8 from ζ.

Let g1 be the metric on Ω obtained by pulling back the metric g on D by f−1. Thus f : (D, g)→
(Ω, g1) is an isometry. Let let Γn(t) be the g1-geodesic joining f(z0) = w0 to wn with Γn(0) = w0.
Another subsequence, again labeled in the same way, of the initial directions Γ′n(0) converges to a
direction which determines a geodesic Γ. Let γ = f−1(Γ), γ = γ(t), θ = γ′(0), 0 ≤ t ≤ Tθ. Let
γn = f−1(Γn) and let tn = lg(γn) = lg1(Γn). Write

|f(γ(Tθ))− wn| = |f(γ(Tθ))− f(γn(tn))|
≤ |f(γ(Tθ))− f(γ(τ))|+ |f(γ(τ))− f(γn(τ))|

+ |f(γn(τ))− f(γn(tn))|.

As γ′n(0) → γ′(0) = θ, we conclude for n sufficiently large that |f(γ(Tθ)) − wn| can be made
arbitrarily small by choosing τ close enough to Tθ. Hence ω = f(γ(Tθ)). This completes the proof
in the case δ <∞.

We indicate now how the argument should be modified in the complete case δ = ∞. Choose
a base point z0, which is fixed for the entire argument. Let w0 = f(z0). The g1-geodesic rays
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from w0 can be extended indefinitely, and we need to know that they have a limit. Any such ray
is the image under f of a geodesic γ = γ(t), γ(0) = z0. Changing f by an appropriate Möbius
transformation of the range, and maintaining the same notation convention as above, we may
assume that U ′(0) ≥ c > 0. Then, as in the proof of Corollary 3, we have U(t) ≥ b+ ct, t ≥ 0, and

(3.2)

∫
γ
|f ′| |dz| <∞.

Thus limt→∞ f(γ(t)) exists, and we denote if by f(γ(∞)) ∈ ∂Ω.
For the continuity of f(γ(∞)) depending on the initial directions at z0 we argue as follows.

Take a geodesic γ1(t) from z0. This time we modify f by a Möbius transformation to change the
gradient of uf at z0 so that U ′(0) ≥ c > 0 for all rays from z0 that form an angle of less than π/4
with γ′1(0). This makes the integrals in (3.2) uniformly bounded over all such rays, and f uniformly
bounded in the sector covered by the rays. From here the proof of continuity, and that all of ∂Ω is
hit by the f(γ(∞)), is almost identical to the above. Only (ULP) is necessary.

4 Extremal Functions

Suppose the metric g satisfies (ULP), or (ULP*), and (BPJ). Recall that f is an extremal function
for (1.5) if f(D) is not a Jordan domain, and that a corresponding extremal geodesic joins two
points on ∂D where f is not injective.

The principal result on extremal functionas and extremal geodesics is the following.

Theorem 4 Let g have the properties (ULP), (or (ULP*)) and (BPJ). Then
(i) Equality holds in (1.5) for an extremal function along an extermal geodesic.
(ii) The image f(γ) of an extremal geodesic under the extremal function f is a euclidean circle.

Part (i) of this theorem is another reason for the term extremal function. Its converse, however,
is not true. Take Nehari’s criterion |Sf(z)| ≤ 2/(1 − |z|2)2. The interval (−1, 1) is an extremal
geodesic for the function

L(z) =
1

2
log

1 + z

1− z
.

But we also have |Sf(z)| = 2/(1− |z|2)2 along (−1, 1) for the function

f(z) =
1√
2

(1 + z)
√

2 − (1− z)
√

2

(1 + z)
√

2 + (1− z)
√

2
, Sf(z) =

−2

(1− z2)2
,

and f(D) is a Jordan domain, in fact a quasidisk. Hence, in our sense, f is not an extremal function
for Nehari’s criterion.

Let f be an extremal function for (1.5), with f(ζ1) = f(ζ2), and let γ be an extremal geodesic
joining ζ1 and ζ2. Theorem 4 does not assume any normalizations on f , but the proof, which
depends on properties of the associated function, needs some. Normalize f via M ◦ f , where M is
a Möbius transformation, so that

(4.1) f(ζ1) = f(ζ2) =∞.

11



Let γ(t), be a g-unit speed parametrization of γ in the direction from ζ2 to ζ1. We consider the
associated function uf restricted to an extremal geodesic γ. As earlier we let

U(t) = uf (γ(t)).

For the complete case we have the following preliminary result.

Lemma 1 If δ =∞ then U(t) is constant.

Proof. Recall from Corollary 1 that U(t) is a convex function of t. If U(t) were not constant
it would be bounded from below by some nonconstant affine function b + ct, as in the proof of
Corollary 3. But then this would make one of the integrals∫

γ+
|f ′(z)| |dz|,

∫
γ−
|f ′(z)| |dz|

finite, where γ+ = γ|[0,∞) and γ− = γ|(−∞,0]. This contradicts f(ζ1) = f(ζ2) =∞.

Later we will show more precisely that the constant value of U is the absolute minimum of uf
on D.

For the case δ <∞ there are two basic lemmas. We maintain the nomalization (4.1).

Lemma 2 Suppose δ <∞. Then an extremal geodesic has length δ and its midpoint is the unique
critical point of U(t).

Proof. We show first that U(t) must have a critical point. If not then U is monotone, say increasing.
Consequently U(t) ≥ U(t0) = a for t ≥ t0, and thus

|f ′(z)| ≤ 1

a2
eσ(z)

for z ∈ γ after γ(t0). This gives that∫ ζ1

γ(t0)
|f ′| |dz| ≤ δ

a2
<∞,

and therefore that f(ζ1) is finite, contradicting the normalization of f .
Let z0 = γ(0) be a critical point for U(t). Since U ′′ ≥ −(π/δ)2U , it follows that

(4.2) U(t) ≥ U(0) cos(
π

δ
t)

for |t| < δ/2. If either dg(z0, ζ1) or dg(z0, ζ2) is < δ/2 then u would be bounded below by a
positive constant on either the part of γ from z0 to ζ1 or from ζ2 to z0. As before, this leads to a
contradiction with the normalization of f .

Since in any case dg(z0, ζ1) +dg(z0, ζ2) ≤ δ, we conclude that dg(z0, ζ1) = dg(z0, ζ2) = δ/2. This
also shows that the critical point is unique.

Lemma 3 If δ <∞ and z0 = γ(0) is the midpoint then

(4.3) U(t) = U(0) cos(
π

δ
t), −δ

2
≤ t ≤ δ

2
.
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Proof. As in (4.2), we have

U(t) ≥ U(0) cos(
π

δ
t), −δ

2
≤ t ≤ δ

2
,

hence U(t) > 0. We also know that U is monotone for −δ/2 < t < 0 and for 0 < t < δ/2. We claim
it is increasing on the negative interval and decreasing on the positive. Suppose not, say that U is
increasing for 0 ≤ t ≤ δ/2. Then U(t) ≥ U(0) = a for 0 < t < δ/2, which implies as before that
f(ζ1) is finite, a contradiction.

Since U > 0, we conclude that both limits limt→±δ/2 U(t) exist. But these limits must be zero,
for otherwise U would be bounded from below by a positive constant on some half of γ. Hence
U(δ/2) = U(−δ/2) = 0 and again the Sturm comparison theorem implies (4.3).

Part (i) of Theorem 4 now follows from these lemmas. For in either of the cases δ < ∞ or
δ =∞ the function U satisfies

U ′′ +
π2

δ2
U = 0

along the extremal geodesic, and this implies that equality holds in (1.5) there. Since Sg(M ◦ f) =
Sgf for a Möbius transformation M , the same is true for any extremal function with this extremal
geodesic, normalized or not.

We turn to the geometry of extremal geodesics. Let f be an extremal function for (1.5) with
an extremal geodesic γ joining ζ1, ζ2 ∈ ∂D where f(ζ1) = f(ζ2). Normalize f as in (4.1). To prove
part (ii) of Theorem 4 we then want to show that f(γ) is a straight line, and we do this by showing
that its euclidean curvature is zero.

First we need a general formula. If ξ : [a, b] → C is a curve with ξ′ 6= 0 then the Schwarzian
Sξ is defined by the same formula as for analytic functions. When ξ(s) is a (euclidean) arclength
parametrization then ξ′(s) = eiθ(s) and

ξ′′

ξ′
= iθ′ = ik,

where k is the curvature. Thus

(4.4) Sξ = ik′ +
1

2
k2,

a well known formula, see for example [1] p. 21.
Next, when δ < ∞ let z0 be the g-midpoint of γ, as in Lemma 3, and normalize f further so

that

(4.5) uf (z0) = 1.

It follows from Lemma 3 and the definition of uf that, along γ,

(4.6) |f ′(z)| = eσ(z) cos−2(
π

δ
dg(z, z0)),

where dg is the distance in the metric g. Though this formula is for the case δ <∞, (4.6) includes
the complete case. That is, if δ =∞ then

(4.7) |f ′| = eσ

13



along γ, where, using the result of Lemma 1, we further normalized f to have uf identically 1 along
γ.

Let ξ1 = ξ1(s) be a euclidean arclength parametrization of γ. We introduce the following
real-valued function, modeled on f along γ. Define f0(s) by

(4.8) f ′0(s) = eσ(ξ1(s)) cos−2(
π

δ
dg(ξ1(s), z0)), f0(0) = 0.

We need the fact that the Schwarzians of f0(s) and of ξ1(s) are related through

(4.9) Sf0 − 2(σzz − σ2
z)(ξ

′
1)2 = 2

π2

δ2
e2σ + 2σzz̄ + Sξ1,

where in this equation and elsewhere in the proof σ and its z-derivatives are evaluated at ξ1(s).
To derive this, we first have

f ′′0
f ′0

= 2 Re{σzξ′1}+ 2
π

δ
eσ tan(

π

δ
dg),

where we have used that the derivative of dg(ξ1(s), z0) is 1 when differentiating along γ with respect
to g-arclength, and hence is eσ when differentiating with respect to the euclidean arclength s. Since
γ is a g-geodesic its euclidean curvature is

k1 = −2 Im{σzξ′1},

thus
f ′′0
f ′0

= 2σzξ
′
1 + ik1 + 2

π

δ
eσ tan(

π

δ
dg).

Differentiate again and use |ξ′1| = 1 and ξ′′1 = −k1ξ
′
1. With a little effort this leads directly to (4.9).

Next, using (1.10), the euclidean form of (1.5), we appeal to part (i) of the Theorem 4 and
observe that for an extremal f there is a function ε(z) along γ with |ε| = 1 such that

(4.10) Sf − 2(σzz − σ2
z) = (

2π2

δ2
e2σ + 2σzz̄)ε,

along γ.
Now let ξ2 = ξ2(t) be a euclidean arclength parametrization of the image curve f(γ). Then by

construction
f(ξ1(s)) = ξ2(f0(s)).

Taking Schwarzians of both sides we obtain

(Sf)(ξ′1)2 + Sξ1 = (Sξ2)(f ′0)2 + Sf0,

which together with (4.10) and (4.9) gives

2(
π2

δ2
e2σ + σzz̄)(ξ

′
1)2ε = 2

π2

δ2
e2σ + 2σzz̄ + (Sξ2)(f ′0)2.

The left hand side of (4) has absolute value 2(π/δ)2e2σ + 2σzz̄, while the right hand side will have
the same absolute value if and only if Sξ2 = 0. Recalling that Sξ2 = ik′2 + (1/2)k2

2, where k2 is the
euclidean curvature of ξ2 = f(γ), this implies that f(γ) must be part of a straight line. But then
it must be the entire straight line because both endpoints are at infinity.

14



This completes the proof of part (ii) of Theorem 4 when f is normalized, and hence in general.

Before continuing, we note that an extremal function f normalized as above, which maps an
extremal geodesic γ to a straight line, is completely determined along γ. We know |f ′| along γ by
(4.6) or (4.7), and if f(γ) is a line we also know the argument. So, for instance, if the image is the
real axis then for z ∈ γ we have, up to a constant,

f(z) =
δ

π
tan(

π

δ
dg(z, z0))

when δ <∞, and
f(z) = dg(z, z0),

when δ =∞. Here z0 is the midpoint of γ in the first case and any fixed point on γ in the second.
(Thus f is the developing map for the metric g along γ, for readers familiar with that terminology.)

We now deduce further properties of the associated function uf along an extremal geodesic in
the complete case.

Corollary 4 Suppose g is complete and let f be an extremal function. Under the normalizations
(4.1) the associated function satisfies graduf = 0 along an extremal geodesic γ, and assumes its
absolute minimum in D along γ.

Proof Since f(γ) is a straight line, we may rotate f if necessary and assume that f(γ) is the real
axis. Let ξ = ξ(s) be a euclidean arclength parametrization for γ. Since f(γ) is real, along γ we
have arg f ′ = − arg ξ′. Thus

(4.11) f ′ξ′ = eσ.

From this,

(4.12) ξ′
f ′′

f ′
+
ξ′′

ξ′
= 2 Re{σzz′1},

and using the equation for curvature, ξ′′/ξ′ = ik = −2 Im{σzξ′}, we get

(4.13)
f ′′

f ′
= 2σz.

It is easy to see that this last equation is equivalent to graduf = 0 along γ.
The function uf is constant on γ by Lemma 1, and this value is the absolute minimum of uf in

D by convexity.

In Theorem 6 in the next section we will need to prove that a geodesic is extremal. Thus as a
complement to the preceding results, we need the following elementary and general fact.

Lemma 4 Let f satisfy (1.5). Suppose γ is a geodesic segment in D along which uf attains its
absolute minimum. Then f(γ) is a straight line segment in f(D).

Proof. We are not assuming that the metric is complete, and in fact this is the one case where we
do not need that the curvature is nonpositive.

Let Ω = f(D) and let g1 be the pullback of g under f−1. Thus f : (D, g) → (Ω, g1) is an
isometry. The metric g1 is also conformal to the euclidean metric. For purposes fully explained in
the next section, we write is as g = ρ2

f |dw|2, so that ρf ◦ f = u2
f . Now, by hypothesis, ρf attains

its absolute minimum along the g1-geodesic Γ = f(γ) in Ω. It is easy to see from this that the
differential equation satisfied by Γ reduces to d2Γ/ds2 = 0.
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5 Reflections and Extensions in the Complete Case

In this section we consider the problem of homeomorphic and quasiconformal extensions to Ĉ of
functions satisfying

(5.1) ||Sgf ||g ≤
1

2
|K(g)|

when g = e2σ|dz|2 is complete. Suppose also that the metric satisfies (ULP) and (BPJ). Then
such an f has a continuous extension to D, and if there is an extremal function there is also a
corresponding extremal geodesic.

Let Ω = f(D). As on earlier occasions, we define a metric on Ω by

g1 = (f−1)∗g,

and we write
g1 = ρ2

f |dw|2.
Then f : (D, e2σ|dz|2)→ (Ω, ρ2

f |dw|2) is an isometry, and

ρf ◦ f = u2
f .

We define a mapping Λ = Λf of Ω by

(5.2) Λ(w) = w +
1

∂w log ρf (w)
.

Under certain circumstances Λf will be a reflection across ∂Ω, and will allow us to define an
extension Ef of f .

We shall need a property of Λf known as conformal naturality.

Lemma 5 If M is a Möbius transformation then ΛM◦f = M ◦ Λf .

The equation in the lemma means that

(5.3) ΛM◦f (M(f(z))) = M(Λf (f(z)))

for any point z ∈ D.

Proof. The identity (5.3) is easy to check for a similarity, so we go through the calculation only
for an inversion. With h = 1/f , we have h′ = −f ′/f2 and from this,

(h−1)∗g = τ2|dz|2 with τ = |f |2eσ−ϕ = |f |2ρf ,

or
log τ = log ρf + 2 log |f |.

With w = f(z) and ζ = 1/w we now compute that

∂ζ log τ = −w2∂w log ρf − w.

Then

ζ +
1

∂ζ log τ
=

1 + 1
w (−w − w2∂w log ρf )

−w − w2∂w log ρf
=

∂w log ρf
1 + w∂w log ρf

=
1

w +
1

∂w log ρf

,

which is the desired identity.

The combination of the following two lemmas gives conditions for Λf to be a reflection across
∂Ω.
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Lemma 6 If u = uf has a unique critical point in D then

(5.4) |∂w log ρf | → ∞ as w → ∂Ω.

Proof. We compute that

|∂w log ρf | =
1

ρf
|∂wρf | = u−2e−ϕ2u|∂zu| = 2ue−σ|∂zu| = ue−σ| gradg0 u|.

Using the general relations gradg = e−2σ gradg0 and || · ||g = eσ| · |, we thus find that

(5.5) |∂w log ρf | = u|| gradg u||g.

Suppose z0 is the unique critical point of u in D. Then as in the proof of Corollary 3, || gradg u||g ≥
c > 0 outside some compact set containing z0. It follows from (5.5) and from (2.4) that |∂w log ρ|
becomes unbounded near ∂Ω, as desired.

Lemma 7 Suppose ||Sgf ||g ≤ 1
2 |K(g)|, and that g is complete. Let Ω = f(D). Suppose for every

Möbius transformation M that uM◦f has at most one critical point in D. Then Λf takes values in

Ĉ\Ω.

Proof. Suppose to the contrary that there exists a w1 ∈ Ω such that Λf (w1) ∈ Ω. Choose a
Möbius transformation M such that uM◦f has a critical point at z1 = f−1(w1). By assumption,
z1 is therefore the unique critical point of uM◦f , and again by Corollary 3, (M ◦ f)(D) = M(Ω)

is bounded. But Λf (w1) = Λf (f(z1)) ∈ Ω, hence M(Λf (f(z1))) ∈ M(Ω). On the other hand, by
(5.3),

M(Λf (f(z1))) = ΛM◦f (M(f(z1))) =∞,

the last equality because z1 is a critical point for uM◦f . This contradicts the boundedness of M(Ω).

We now define an extension of f by the formula

(5.6) Ef (z) = f(z)for |z| ≤ 1,Λ(f(1/z̄))for |z| > 1.

Theorem 5 Let g satisfy (ULP) and (BPJ). Suppose ||Sgf ||g ≤ 1
2 |K(g)|, and that g is complete.

The following are equivalent:
(a) Ef is a homeomorphism of Ĉ;

(b) Λf is injective with values in Ĉ\Ω;
(c) for each Möbius transformation M , uM◦f has at most one critical point in D.

Proof. (a)⇒ (b): This is an immediate consequence of the definition of Ef .
(b) ⇒ (c): Because of the conformal naturality of the extension, the hypothesis in (b) is invariant
under Möbius changes M ◦ f . Observe that a critical point of u in D corresponds under f to a
critical point of ρf in Ω, which is in turn mapped by Λf to the point at infinity. Hence uf can have
at most one critical point.
(c)⇒ (a): This implication is the core of the theorem, and by now most of the work is done. First,
f(D) must be a Jordan domain, for if not then f is an extremal function and there is an extremal
geodesic, say joining ζ1, ζ2 ∈ ∂D. We may assume that f is normalized so that f(ζ1) = f(ζ2) =∞.
Then graduf = 0 along γ by Corollary 4. Next, by Lemma 6, Ef is continuous on |z| = 1, and
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its (spherical) continuity elsewhere is clear. Finally, in order to show that Ef is globally injective
it suffices to show that this is so for Λf , as Λf takes values outside Ω. Suppose Λf (w1) = Λf (w2).
Via a Möbius transformation we may assume that this common value is the point at infinity. In
that case, the corresponding function u must have critical points at f−1(w1) and f−1(w2), hence
f−1(w1) = f−1(w2). Therefore w1 = w2. This proves that Ef is a continuous, injective map of Ĉ
onto itself, and hence is a homeomorphism.

We studied homeomorphic extensions in an earlier paper1 [9] for the Ahlfors-Weill extension
[3], which is precisely Ef when g is the Poincaré metric.

From the theorem we obtain a result on quasiconformal extension, requiring however that the
curvature be strictly negative.

Corollary 5 Let g satisfy (ULP) and (BPJ). If K(g) < 0 and if

(5.7) ||Sgf ||g ≤
t

2
|K(g)|

for some 0 ≤ t < 1, then f has a 1+t
1−t -quasiconformal extension to Ĉ.

Proof. We claim first that Ef is a homeomorphic extension of f . Suppose by way of contradiction
that there is some Möbius transformation M so that uM◦f has at least two critical points in D.
Then by convexity uM◦f attains its absolute minimum all along the geodesic segment between the
two points. As in the last section this implies that ||Sgf ||g = (1/2)|K(g)| along that segment, a
contradiction.

Next, one computes as in [5] that the Beltrami coefficient µ of Λf has magnitude

(5.8) |µ ◦ f | = 2

|K(g)|
||Sgf ||g.

This is ≤ t < 1 and the conclusion follows.

Remark. In terms of the classical Schwarzian, Corollary 5 is essentially the strong form of Epstein’s
univalence criterion (1.6) as given in [14]. The version here in terms of the Schwarzian tensor appears
in [5] and [6]. The form (5.2) of the reflection Λ and (5.6) of the quasicionformal extension Ef
are also Epstein’s. His construction in [14], involving an ingenious use of reflections in surfaces in
hyperbolic space, is much different from the one given here. (The conformal naturality in Lemma
5 can also be deduced from Epstein’s construction.) An extension operator of this form was also
proposed by Ahlfors in [2], though not in this much generality and without reference to a reflection
in the image. We consider Ahlfors’s criterion in Section 7.

The topological fact that Ef is a global homeomorphism once it is a local homeomorphism was
used on several occasions by Ahlfors. In his work, the fact that Ef is a local homeomorphism
depends on showing that the Jacobian is positive, and this follows from knowing that the Beltrami
coefficient in (5.8) is ≤ t < 1. This reasoning cannot be applied in the limiting case t = 1.

The ideal situation would be that Ef is a homeomorphic extension of f if and only if f(D) is a
Jordan domain, but this is not the case. It is true when the metric g is real analytic, but false for
C∞ metrics.

1In [9] we wrote Ef for the reflection and F for the extension. We apologize for the inconsistent notation.
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Theorem 6 Let g = e2σ|dz|2 be a complete metric on D satisfying (ULP ) and (BPJ). Suppose
||Sgf ||g ≤ 1

2 |K(g)|.
(i) If g is real analytic then f(D) = Ω is a Jordan domain if and only if Ef is a homeomorphism.
(ii) If g is C∞ then there are conformal mappings of D onto Jordan domains for which Ef is not
a homeomorphism.

Proof. The necessity in (i) is clear. We shall prove that if Ef is not a homeomorphism then f(D)
is not a Jordan domain, and for this we appeal to the equivalent condition (c) in Theorem 5. That
is, assume for some Möbius transformation M , that u = uM◦f has at least two critical points in D,
say at z1, z2. Without loss of generality we may suppose this happens for f itself. By convexity,
u then attains its absolute minimum u0 at z1 and z2 and also along the geodesic segment joining
them. Since the quantities are real analytic, u = u0 along the entire geodesic γ through z1 and z2.
This is the situation in Lemma 4, and it follows that f(ζ1) = f(ζ2) = ∞, where ζ1 and ζ2 are the
asymptotic endpoints of γ on ∂D. We wish to show that ζ1 6= ζ2, hence Ω is not a Jordan domain.
(Hence f is an extremal function and γ is an extremal geodesic.)

Suppose to the contrary that that ζ1 = ζ2 = ζ. Take any point z0 ∈ γ, and let γ1 be the
geodesic through z0 normal to γ at z0. Then γ1 followed in one direction must end at the same
asymptotic boundary point ζ, because geodesics cannot cross more than once. Let U(t) = U(γ1(t))
with U(0) = z0 and limt→∞ U(t) = ζ. Then U(t) is convex and U ′(0) = 0. If U(t) is not identically
equal to u0 for t ≥ 0, then U(t) is bounded below by some non-constant affine function, and this
implies that |f(ζ)| < ∞, contrary to the above. Hence U(t) ≡ u0 for t ≥ 0. Since z0 ∈ γ was
arbitrary we conclude that u = u0 on the component of D\γ containing γ1, and so u = u0 in D by
analyticity. Now

|f ′| = u−2eσ = u−2
0 eσ,

and hence the metric g1 = ρ2|dw|2 on Ω is a constant multiple of the euclidean metric, since
ρ ◦ f = u2

f = u2
0. But now f : (D, g) → (Ω, g1) is an isometry, and thus g1 is complete. This can

only happen if Ω = C, an absurdity. This contradiction proves that ζ1 6= ζ2, and hence that Ω is
not a Jordan domain. We conclude that u has at most one critical point, proving the first part of
the theorem.

For the proof of (ii) we construct an example of a function f satisfying (1.7) such that Ef fails
to be a homeomorphism despite f(D) being a Jordan domain. In fact, by choosing the metric
g on D properly we can accomplish this with f(z) = z. Write g = e2σ|dz|2 as usual. Because
ϕ = log |f ′| = 0 for f(z) = z, the inequality ||Sgf ||g ≤ (1/2)|K(g)| appears as

(5.9) |σzz − σ2
z | ≤ σzz̄,

in terms of σ alone. We want to choose σ satisfying this condition in such a way that uf has more
than one critical point. According to Theorem 5, Ef cannot then be a homeomorphism.

Let ν be defined by the equation

σ = log
1

1− ν
.

Then (5.9) is easily shown to be equivalent to

(5.10) |νzz| ≤ νzz̄ +
|νz|2

1− ν
.

This inequality is in turn implied by
|νzz| ≤ νzz̄,
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which is itself equivalent to the euclidean convexity of ν. In summary, in order for (5.9) to hold it
suffices to take σ = − log(1− ν) for any convex function ν which is less than 1 in the disk.

We now take ν : D → [0, 1] to be radially symmetric C∞ function where, regarding ν as a
function from [0, 1] to itself, ν = 0 on a small interval [0, ε], 0 < ε < 1, ν ′′ ≥ 0 on [0, 1], ν(1) = 1
and ν ′(1) <∞. Because of this last condition∫ 1

0

dr

1− ν(r)
=∞,

making the corresponding metric e2σ|dz|2 complete. The resulting function uf will have all z with
|z| < ε as critical points. This completes the construction, and with it the proof of the theorem.

Finally, observe what happens with the reflection Λf when there is an extremal function f
and an extremal geodesic γ. Suppose that γ has endpoints ζ1, ζ2 ∈ ∂D, and normalize f so that
f(ζ1) = f(ζ2) =∞. Let γ∗ be the reflection of γ in |z| = 1. Corollary 4 states that graduf vanishes
along γ, and so from the definition of Λf , and the relation ρf ◦ f = u2

f , we see that that Λf is
identically ∞ along γ∗. That is, Λf collapses the reflection of an extremal geodesic to a point. By
conformal naturality, (5.3), this holds regardless of whether f is normalized.

6 Visible Boundary

We recall the unique limit point property (ULP), (ULP*) and the boundary point joining property
(BPJ) from Section 1. In this section we give several sufficient conditions in terms of the conformal
factor σ for the metric g = e2σ|dz|2 to have these properties. We continue to assume that the
curvature is ≤ 0. We let r and θ denote the usual polar coordinates on D.

Theorem 7 (i) Suppose that g = e2σg0 satisfies

σr > 0

|σθ| ≤ C(1− r)−ασr,

for some constants C ≥ 0 and α ∈ [0, 1). Then g satisfies ULP.
(ii) Suppose that σr(z)→∞ as |z| → 1 and for some annulus r0 ≤ |z| < 1 and a constant M <∞
that |σθ(reiθ)| ≤M . Then (ULP*) and (BPJ) hold.

Proof. (i). We observe first that that a euclidean disk |z| ≤ r is convex in the metric g, for the
condtion σr > 0 implies that |z| = r has positve geodesic curvature. As a consequence, |z| cannot
have a local maximum in D along a maximally extended geodesic. Thus, if properly traced, |z|
must be increasing along a tail of the geodesic.

In order to prove (ULP) we shall use polar coordinates to analyze the geodesic equation. With
the metric in the form e2σ(dr2 + r2dθ2) the Christoffel symbols are

Γrrr = σr, Γrrθ = σθ, Γrθθ = −r − r2σr,
Γθrr = − 1

r2
σθ, Γθrθ = 1

r + σr, Γθθθ = σθ.

Let γ(t) = (r(t), θ(t)) be a unit speed geodesic. Then ṙ2 + r2θ̇2 = e−2σ and the geodesic equations
become

r̈ + σrṙ
2 + 2σθṙθ̇ − (r + r2σr)θ̇

2 = 0,

θ̈ − 1

r2
σθṙ

2 + 2(
1

r
+ σr)ṙθ̇ + σθθ̇

2 = 0.

20



We write this as the following first order system in the variables r, θ, ξ, and η:

ṙ = e−2σξ,

θ̇ =
1

r2
e−2ση,

ξ̇ = σr + e2σrθ̇2,

η̇ = σθ.

Fix a base point z0 6= 0. Let γ be a geodesic starting at z0, and suppose the initial conditions
are r(0) = r0 = |z0| > 0, θ(0) = θ0, ξ(0) = ξ0 and η(0) = η0, with ξ0 > 0, i.e., the geodesic is
initially moving toward the boundary. Since ξ̇ > 0 we have ξ(t) > 0 for all t, hence r(t) is strictly
increasing. It is therefore possible to consider θ as a function of r along the curve.

We want to estimate |dθ/dr|. Since |dθ/dr| = |θ̇/ṙ| = |η/r2ξ|, we need to bound |η/ξ|. For this,

|η̇| = |σθ| ≤ C(1− r)−ασr ≤ C(1− r)−αξ̇,

hence

|η(t)− η0| ≤ C

∫ t

0
(1− r(s))−αξ̇(s) ds

≤ C(1− r(t))−α
∫ t

0
ξ̇(s) ds,

because r(s) is increasing. Thus

|η(t)− η0| ≤ C(1− r(t))−α(ξ(t)− ξ0) ≤ C(1− r(t))−αξ(t),

or
|η(t)| ≤ C(1− r(t))−αξ(t) + |η0|,

so ∣∣∣∣η(t)

ξ(t)

∣∣∣∣ ≤ C(1− r(t))−α +
|η0|
ξ(t)

.

Since
|η0|
ξ(t)

≤ |η0|
ξ0
,

it follows, for some constant C1 depending on r0 and |η0|/ξ0, that∣∣∣∣η(t)

ξ(t)

∣∣∣∣ ≤ C1(1− r(t))−α.

With this, ∣∣∣∣dθdr
∣∣∣∣ =

∣∣∣∣ ηr2ξ

∣∣∣∣ ≤ C1

r2
(1− r)−α ≤ C2(1− r)−α.

Now,

|θ(r)− θ(r0)| ≤
∫ r

r0

∣∣∣∣dθdr
∣∣∣∣ dr,

and by the estimate above the integral converges as r → 1. Therefore θ(r) has a limit as r → 1,
and γ has a unique limit point on ∂D.
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We next want to show that the end point of γ on ∂D varies continuously with the initial
direction. The estimate we need for this is, essentially, a bound on the euclidean diameter of the
tail of a geodesic. Take 0 ≤ t1 < t2, with r0 ≤ r1 = |γ(t1)| < |γ(t2)| = r2. Then

|γ(t2)− γ(t1)| ≤
∫ r2

r1

√
1 + r2

(
dθ

dr

)2

dr

≤
∫ r2

r1

√
1 + C2

2r
2(1− r)−2α dr

≤ C3

∫ 1

r1

(1− r)−α dr ≤ C0(1− r1)1−α.

The constant C0 depends on α and on the initial data at the base point z0. In particular, the
euclidean diameter of the tail of γ tends to zero.

Let γ0 be a geodesic starting at z0 with initial direction θ0 and ending at a point ζ0 on ∂D. We
show continuity at θ0.

Let ε > 0. Let r1 be such that

C0(1− r1)1−α <
ε

3
,

with C0 as in the estimate above. Choose r2 so that 0 < r2 − r1 < ε/3. There exists a t1 ≥ 0 such
that

|ζ0 − γ0(t)| < ε

3
, and |γ0(t)| ≥ r1,

if t ≥ t1.
Let γ(t) be another geodesic starting at z0 with initial direction θ. By continuity of the solution

of the geodesic equation in the parameters, there exists a δ > 0 such that |θ − θ0| < δ implies for
0 ≤ t ≤ t1 that,

|γ(t)− γ0(t)| < r2 − r1 <
ε

3
.

Hence
|γ(t1)| > |γ0(t1)| − (r2 − r1) ≥ r1.

If δ is small enough the constant, say C ′0, entering into the estimate on the tail of γ, will also satisfy
C ′0(1− r1)1−α < ε/3, and thus γ has a small tail after γ(t1). So, for t ≥ t1,

|ζ0 − γ(t)| ≤ |ζ0 − γ0(t1)|+ |γ0(t1)− γ(t1)|+ |γ(t1)− γ(t)| < ε.

Thus the endpoint ζ ∈ ∂D of γ has |ζ − ζ0| < ε.

Finally, the estimate on the tails also implies that every point on ∂D is the limit point of a
geodesic. Let ζ0 be a point on ∂D that can be reached by a geodesic from z0. We show that we can
reach some other point on ∂D, and this implies that all points on the boundary are visible. Let
z1 ∈ D be very close to, say, −ζ0. Choose a disk |z| ≤ r containing both z0 and z1. Since this disk
is convex in the metric g, the geodesic from z0 to z1 stays in the disk. If |z1| is sufficiently close to
1 then the tail of γ from z1 to the boundary will be small, making it impossible for its endpoint to
be ζ0. This completes the proof of part (i) of the theorem.

(ii). We first prove (ULP*), for which we need only consider the case when the diameter of the
disk is finite. The euclidean curvature of a geodesic is given by the normal derivative ∂σ/∂n.
Since σr → ∞ while σθ is bounded, it follows that the tangent vector to a geodesic tends to the
radial direction as the geodesic tends to the boundary. Then it is easy to see that the ratio of
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the euclidean lengths of tails of geodesics with close initial conditions is uniformly bounded. Now,
because |σθ| ≤ M , a euclidean rotation is a quasi-isometry for the metric g near the boundary.
Thus the lengths of such tails must tend uniformly to zero, and one deduces the continuity of the
length function in (ULP*) directly.

To prove that any two points on ∂D can be joined by a geodesic in D, whether or not g is
complete, we first establish a property of the total curvature near the boundary. Namely:

If U is a relatively open subset of D containing a polar rectangle R = {reiθ : r1 ≤ r ≤ 1, α ≤ θ ≤ β},
then

(6.1)

∫
U
K(g) dAg = −∞.

For this, let R′ = {reiθ : r1 ≤ r ≤ r2 < 1, α ≤ θ ≤ β} ⊂ R. Then∫
R′
K(g) dAg = −

∫∫
R′

∆σ dx dy = −
∫
∂R′

∂σ

∂n
|dz|.

For the line integral, the contributions along the radial sides of R′ are uniformly bounded by virtue
of the assumption |σθ(reiθ)| ≤ M . The arc of the inner circle is fixed, while along the outer arc,
∂σ/∂n = σr →∞ as r2 → 1. We conclude that∫

R
K(g) dAg → −∞ as r2 → 1

hence ∫
U
K(g) dAg = −∞,

which proves (6.1).
We sketch how the unique limit point property and (6.1) come into play in proving that any

two points on ∂D can be joined by a geodesic. This is a standard part of the more general theory of
visibility manifolds, and it is included here for the convenience of the reader. Let z0 ∈ D be fixed.
We consider all geodesics starting at z0. By (ULP), any such geodesic γ(t), 0 ≤ t ≤ Tγ , determines
a point w = limt→Tγ γ(t) ∈ ∂D. We may consider w as a function of γ′(0) in the tangent space
Tz0D

∼= S1 = ∂D. As in the proof of Theorem 3, w depends monotonically and continuously on
γ′z0(0) and all such limit points must cover ∂D.

Let w1, w2 ∈ ∂D, and let γ1 and γ2 be two geodesics starting at z0 which have w1 and w2

as asymptotic limits, respectively. Let an = γ1(tn), bn = γ2(tn
′), an → w1, bn → w2, and let

Γn = Γn(t) be the (unique) geodesic joining an to bn. (Since σr → ∞ it follows easily that such
geodesics exist and lie in D.) A direct application of the Gauss-Bonnet theorem gives that the
integrals ∫

Tn

K(g) dAg

are uniformly bounded below, where Tn is the triangle bounded by γ1|[0,tn], γ2|[0,tn′], and Γn. By
(6.1) Γn cannot converge to ∂D. Hence, by passing to a subsequence of the Γn, there is sequence
{zn} on Γn with zn → z1 ∈ D, and also with the tangent vectors Γ′n at zn converging to a direction
θ1 at z1. Then the geodesic through z1 with direction θ1 is the desired geodesic; when followed
forward and backward from z1 it will have w1 and w2 as asymptotic limits. This completes the
proof of Theorem 7.
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Next, we show that for complete metrics a condition on just the angular derivative of the
conformal factor is sufficient to guarantee (ULP) and (BPJ). In many examples the conformal
factor is a radial function, so this result is particularly useful.

Theorem 8 Let g = e2σg0 be complete. Suppose for some annulus 0 < r0 ≤ |z| < 1 and for some
constant C <∞ that

(6.2) σθθ(re
iθ) ≤ C.

Then (ULP) and (BPJ) hold.

Proof. Let r0 ≤ r < 1. On every circle |z| = r there is at least one point where σθ vanishes, and
hence σθ ≤ 2πC. But then also σθ ≥ −2πC, and thus

(6.3) |σθ(reiθ)| ≤ 2πC.

From the curvature condition −e−2σ∆σ ≤ 0 we then have that

σrr +
1

r
σr +

1

r2
σθθ ≥ 0, or rσrr + σr ≥ −

C

r
≥ −C

r0
.

We write this as

(6.4) (rσr)r ≥ −
C

r0
,

from which

(6.5) rσr ≥ −c > −∞ on r0 ≤ |z| < 1.

Next, as g is complete, ∫ 1

0
eσ(x) dx =∞,

and hence there exists a sequence {xn}, xn → 1, with σ(xn) → ∞. We may assume that xn is
increasing and that σ(xn+1)− σ(xn) ≥ n. It follows from (6.3) that on any radius σ(xne

iθ)→∞,
and that σ(xn+1e

iθ) − σ(xne
iθ) ≥ n − 4πC if xn ≥ r0. For θ fixed, the mean value theorem then

yields a sequence {yn(θ)eiθ}, xn ≤ yn(θ) ≤ xn+1, such that σr(yn(θ)eiθ)→∞. Now from (6.4) we
deduce that

(6.6) σr(z)→∞ as |z| → 1.

The preceding theorem now applies.

The conditions in Theorems 7 and 8 are certainly not optimal, but they are well suited to many
applications and examples. Separately or together they seem to express the fact that the metrics
we need to work with are ‘asymptotically radial’, but we do not put forward a definition.
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7 An Example

We consider the family of metrics

g =
|dz|2

(1− |z|2)2t
, 0 < t < 1,

of negative curvature, for which D has finite diameter

δ = 2

∫ 1

0

dx

(1− x2)t
=
√
π

Γ(1− t)
Γ(3

2 − t)
.

The corresponding univalence criterion reads

(7.1)

∣∣∣∣Sf(z)− 2t(1− t)z̄2

(1− |z|2)2

∣∣∣∣ ≤ 2t

(1− |z|2)2
+

2π2

δ2

1

(1− |z|2)2t
.

See [2] and [10].
The function σ(z) = −t log(1− |z|2) is radial, and

(7.2) σr =
2tr

1− r2
→∞, r → 1.

It follows from Theorem 7 that g satisfies both the properties (ULP*) and (BPJ).
Let

(7.3) F (z) =
1

c
tan

{
c

∫ z

0

dζ

(1− ζ2)t

}
, c =

π

δ
.

It was shown in [6] that this function, which satisfies (7.1) with equality along (−1, 1), satisfies the
inequality in the full disk if and only if 1/2 ≤ t < 1. Thus for this range of t, F is an extremal
function for (7.1) and (−1, 1) is an extremal geodesic. By rotating F we get extremal functions
and extremal geodesics for any diameter. Furthermore, one can check that the only geodesics
having length δ are precisely the euclidean diameters. It then follows from Lemma 2 that F and its
rotations account for all the extremal functions for the criterion (7.1) for 0 < t < 1. In particular,
for 0 < t < 1/2 there are no extremal functions and any f satisfying (7.1) for a t in this range will
map the disk onto a Jordan domain.

Now let f satisfy (7.1) and suppose that f is not an extremal function. We normalize so that
uf (0) = 1 and graduf (0) = 0. (Since eσ(0) = 1 and 0 is a critical point for σ, this normalization
for f is equivalent to |f ′(0)| = 1, f ′′(0) = 0.) Let γ = γ(t) be any radial segment, with γ(0) = 0.
Then for U(t) = uf (γ(t)) we have

U ′′ ≥ −π
2

δ2
U,

and since f is not extremal it follows that

inf
0≤t<δ/2

U(t) > 0.

It is not difficult to show that this infimum is uniformly bounded below, independent of γ. Hence

inf
z∈D

uf (z) = a > 0,
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and therefore

|f ′(z)| ≤ 1

a2
eσ(z) =

1

a2

1

(1− |z|2)t
.

This inequality implies that f(D) is a bounded (Jordan) domain, and that f admits a (1−t)-Hölder
continuous extension to D; see e.g. [8].

Similar remarks apply to the family of complete metrics

g =
|dz|2

(1− |z|2)2t
,

where this time 1 < t ≤ 2. For the diameter (−1, 1) an extremal is again given by

F (z) =

∫ z

0

dζ

(1− ζ2)t
,

but now F satisfies (1.5), which translates to

(7.4)

∣∣∣∣Sf − 2t(1− t)z̄2

(1− |z|2)2

∣∣∣∣ ≤ 2t

(1− |z|2)2
,

in D for the full range 1 < t ≤ 2; see [6], and [2]. In this case we do not know if there are any other
extremal functions.

Suppose f is a non-extremal satisfying (7.4) and normalized by f ′′(0) = 0. Then the convexity
of uf gives

|f ′(z)| ≤ eσ(z)

(a+ bdg(0, z))2
,

for some constants a, b. One checks that

dg(0, z) ∼
1

(1− |z|)t−1
, |z| → 1,

and using this we get,

|f ′(z)| = O

(
1

(1− |z|)2−t

)
.

This implies that f(D) is bounded and has a (t− 1)-Hölder continuous extension to D. A homeo-
morphic extension for f is induced by the reflection

Λf (f(z)) = f(z) +
(1− |z|2)f ′(z)

tz̄ − (1− |z|2)
1

2

f ′′

f ′
(z)

.
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